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SUMMARY 

A velocity-correction formula is proposed for the purpose of 
calculating, from the known Mach number distribution for a diamond- 
shaped airfoil at a stream Mach number of 1.0, Mach number distributions 
on the same airfoil at speeds from a Mach number of about 0.8 to shock- 
attachment Mach number.  The time required to calculate these additional 
Mach number distributions is small in comparison with the time required 
by rigorous methods.  The accuracy of the results for stream Mach numbers 
near 1.0 is of the same order as the accuracy of the known Mach number 
distribution. Moreover, the results tend to become exact as the stream 
Mach number is increased toward that for shock attachment.  An expression 
for the rate of change of local Mach number with stream Mach number is 
derived and an explicit equation for the drag coefficient as a function 
of stream Mach number and thickness ratio is given. 

INTRODUCTION 

The pressure distribution for a diamond-shaped airfoil at a stream 
Mach number of 1.0 has been calculated by Guderley and Yoshihara 
(reference 1).  Calculations for a similar airfoil at four speeds between 
Mach number 1.0 and the shock-attachment Mach number have been performed 
by Vincenti and Wagoner (reference 2). According to reference 2, 
similar calculations have been made by Cole at slightly subsonic speeds. 
These rigorous results combined with reliable experimental results 
provide sufficient information for checking the accuracy of an approximate 
velocity-correction formula proposed for calculating Mach number distri- 
butions on a diamond-shaped airfoil.  The concepts involved should 
facilitate the calculations for other shapes. 

The justification for the proposed velocity-correction formula is 
based upon its good agreement with existing rigorous calculations. 
Moreover, it is in accord with the general transonic similarity rule, 
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and with the special form of that rule for a stream Mach number of 1.0. 
Also, it agrees with Guderley's result that the local Mach numbers are 
constant for small departures of the stream Mach number from 1.0. 

The present paper gives the derivation of the method of calculation 
and its application for the determination of the Mach number distributions 
over a 10-percent-thick diamond-shaped airfoil in the Mach number range 
0.80 ^ M«, < 1-30. The results are compared with the earlier results 
of Vincenti and Wagoner. A brief discussion is given of the movement 
of the shock wave along the airfoil surface as the stream Mach number 
is decreased below 1.0. 

ANALYSIS AND DISCUSSION 

The velocity-correction formula to be presented for diamond-shaped 
airfoils is based upon the combination of two heretofore unrelated 
concepts.  One concept is obtained from the special form of the transonic 
similarity rule (reference 3) when the free stream is sonic and the 
other from an examination of the transonic approximation for Prandtl- 
Meyer flow. 

Transonic similarity rule for sonic stream.- The form of the transonic 
similarity rule for a sonic stream is derived in the appendix and the 
result obtained is 

x2 1 = 62/3 M^ - 1 = 6 /JC(x) (1) 

where M is the local Mach number, C(x) is a function depending upon 
the body shape, and S is a parameter (such as the airfoil thickness 
ratio or the angle of flow deflection for Prandtl-Meyer flow) used to 
differentiate bodies of the same family. The concept to be obtained 
from the similarity rule is the role played by C(x). For the purpose 
of this paper, it is sufficient to consider the flow past the nose of 
a wedge and the Prandtl-Meyer expansion around a convex corner. The 
flow deflection 6 is taken as positive for the wedge (compression) and 
negative for the Prandtl-Meyer corner (expansion). The stream is sonic. 
Equation (1) may be applied to both of these flows but C(x) will be 
different for the two cases. For Prandtl-Meyer flow C(x) is a constant 
and for the flow past the wedge C(x) corresponds to the Mach number 
distribution given in reference 1.  Thus, C(x) determines the shape of 
the Mach number distribution along the surface. An illustration of 
equation (l) is presented in figure 1 to show the role of C(x). It 
should be noted (fig. 1) that all curves originate at the point M = 1, 

eithe; ^face.iS """ *" ™°'    *  " * " ^    for a11 »*■*• °° 
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Transonic approximation for Prandtl-Meyer flow.- The concept of 
the role played "by 5*, the amount the free stream must be deflected to 
reach sonic velocity, may be illustrated by considering Prandtl-Meyer 
flow. For Prandtl-Meyer flow, in order to reach sonic velocity the 
stream must be deflected through an angle 5*, given approximately 
by (from reference 3 with 2(Mro - 1) replaced by (M«,2 - 1)): 

(ll  2 - lV/2 

where M^ is the stream Mach number and C = hj (7 + l)   , 7 being 

the ratio of specific heats. The value of 8* is taken to be positive. 

Inasmuch as, for Prandtl-Meyer flow, the flow deflection may be 
considered to consist of more than one deflection (fig. 2), the expression 
for the local Mach number may be written: 

M2 - 1 = c|o - 8*|2/3 (3) 

where 5 is taken as the flow deflection from the free-stream direction. 
From equation (2), 5* = 0 when M^ = 1, and, for this case, equation (3) 
reduces to the transonic similarity rule.  A plot of equation (3) is 
shown in figure 3- It is important to note that the curve for Mra > 1 
is the same as the curve for M^ = 1 except that the origin of the 
Moo > 1 curve has been shifted to the point 5*.  This result shows that, 
for Prandtl-Meyer flow, the expression for M2 - 1 is of the same form 
as the transonic similarity rule for a sonic stream, providing 5 is 
measured from the 8* direction. 

Velocity-correction formula for diamond-shaped airfoil.- The 
fundamental assumption made to develop a velocity-correction formula 
for the diamond-shaped airfoil is that the concept of C(x) obtained 
from the similarity rule for a sonic stream and the concept of 8* 
illustrated by Prandtl-Meyer flow may be combined in the form 

M' 2 1 = C(x) |S - S*|2/3 (h) 

It should be emphasized that equation (k) is based upon an assumption 
and is not claimed to be rigorous. Typical plots of equation (k) are 
given in figure h. 

The C(x) used for the diamond-shaped airfoil is obtained from the 
solution given in reference 1 for this airfoil for M^ = 1.  Thus, 
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If the stream Mach number is greater than 1.0, the flow must be 
decelerated (compressed through an angle &*) to reach sonic velocity. 
In the approximation of the transonic small-disturbance theory, the 
compression of the flow caused by a shock wave is isentropic. Thus, to 
the same order of approximation,  5* may be determined from either 
Prandtl-Meyer flow or shock-wave relations.  It can be shown that 5* 
computed from shock-wave relations obeys the transonic similarity rule; 
that is, 

M 

,*2/3 
r (6) 

where K* is a constant. Note that equation (6) is very similar to 
equation (2) which is valid for Prandtl-Meyer flow. The values of S* 
used in the computations were taken from shock-wave tables to insure 
that the results obtained by the use of equation (h)  would fair smoothly 
into those given by shock-expansion theory.  The angle 5*, based on 
shock-wave relations, is shown as a function of MOT in figure 5. 

The concept of 5* previously presented appears to have physical 
significance only for stream Mach numbers greater than 1.0.  In order 
to calculate flows with a stream Mach number less than 1.0, the curve 
for &* was extrapolated by assuming that 5* was an odd function 

of M 2 - 1. 

Conditions satisfied by proposed velocity-correction formula.- 
Equation (k)  contains the transonic similarity rule as a special case. 
Eliminating S* from equations (h)   and (6) leads to the following 
equation: 

W 1 = C(x)8' ^
2/3 1 - 

M» 7 /2 
SK* 

3/2 

2/3 

(7) 

2/3 When M^ = 1, the local Md - 1 distribution is proportional to 5' 
as required by the transonic similarity rule. Moreover, when MOT and 

te - i)3/? 
— — remains constant, the expression 

for the local Mach number at the surface becomes 

5 are varied so that 

M' 2 - 1 = C(x)82/3F 
M 

3/2 
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This expression is in agreement with the corresponding result of the 
transonic similarity rule. 

Equation (k)   is also in accord with the result of Guderley 

(reference k)   that |^~]    = 0 for all shapes having finite thickness. 
VOM-VMOFI 

Thus, from equation (7), at a fixed position x, 

dM   /C(x)\3' M 00 
dMM  V K* /  M 

M2 

M2 - 1 

1/2 
(8) 

and hence 

m\ The result of Guderley that (357-)    = 0 has been used by Vincenti and 
v.dM=°/M00=l 

~ 'Mm=l 
where  c^ is the drag coefficient.  The method of the present paper 

gives this same slope of the drag curve at Mra = 1. 

Wagoner (reference 2) to obtain the result that (—dj    = T\cd) 

At a speed slightly above that for shock-wave attachment, the local 
Mach number over the front half of the diamond-shaped airfoil becomes 

sonic. Equation (8) gives (TTT-)   = °° for this condition, whereas 
\dMoa/M=i 

shock-wave tables indicate that (-TW—\ ,  is extremely large but finite /dM \ 

This difference between infinity and a very large quantity is of no 
practical importance in the present considerations. 

If the proposed velocity-correction formula is to yield good results 
throughout the speed range from M^ = 1 to the speed for shock attach- 
ment, the results should fair smoothly into those for purely supersonic 
flow with attached shock waves and also into those for subsonic stream 
Mach numbers.  For the case of flow with attached shock waves,  8* is 
greater than 5 and the supersonic local Mach numbers may be estimated 
by expanding around a Prandtl-Meyer corner from the 5* direction to 
the 5 direction by use of equation (3) or, preferably, the exact 
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expression for Prandtl-Meyer flow for the deflection 5* - 6. Local 
Mach number distributions were calculated by both the present method 
and by the exact shock-expansion method (reference 5) for a 10-percent- 
thick diamond-shaped airfoil in the Mach number range 1.28 ^ M 5? 1.55. 

The maximum difference in the local Mach numbers predicted by the two 
methods in this speed range was less than 0.01.  This agreement indicates 
that the proposed velocity-correction formula not only fairs smoothly 
into the attached-shock calculations but may also be used as a means 
for calculating such flows with good accuracy. 

The calculation for the rear half of the diamond-shaped airfoil 
at subsonic speeds is beyond the scope of this paper because of the 
presence of a shock wave on the rear surface. The location and strength 
of this shock wave seem to be strongly influenced by viscous effects. 

The general shape of the curve of drag coefficient against Mach 
number calculated by means of equation (k)   is very similar to the "possible 
interpolated" drag-coefficient curve given in reference 2 except near 
attachment Mach number. 

The application of the method to the front and rear surfaces of the 
airfoil are treated separately. 

Application to front surface of diamond-shaped airfoil.- In the 
sign convention adopted,  8*is always positive (M^ ^ l). For a wedge, 
the flow is subsonic if 5 - 5* > 0 and supersonic if 5 - 5* < 0. 
When the local Mach numbers are subsonic, the C(x) given by equation (5) 
is used. When the local Mach numbers are supersonic, Prandtl-Meyer 
concepts are employed as previously discussed. 

Figure 5 shows the angle 8* for sonic flow for a wedge as a 
function of stream Mach number as calculated from shock-wave relations. 
This curve is more accurate than that given by equation (6) since K* 
is not quite constant.  The difference between 8* and the local 
slope 8 is a measure of the deviation of M2 - 1 from zero.  Figure 6 
shows the variation of the M2 - 1 distributions for the front half 
of the airfoil with the stream Mach number.  These results were obtained 
by multiplying the M2 - 1 distribution for M^ = 1 (reference 1) by 

/B _ B*\2/3 
the factor I 1    where 8 is now considered the wedge thickness 

ratio. Figure 7 presents the corresponding local Mach number distributions. 

Reexamination of equation (k)   indicates that the proposed velocity- 
correction formula is equivalent to the assumption that the"local Mach 
number distribution over the front surface of a diamond-shaped airfoil 
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is the same as that for a thinner airfoil in a sonic stream; that is, 
5-5* may he considered as the effective airfoil thickness 5e in a 

sonic stream.  Figure 8 shows, for example, that a 10-percent-thick 
wedge at a stream Mach number of I.167 has the same effective thickness 
as a 5-percent-thick wedge in a sonic stream. A 10-percent-thick wedge 
at Mo,, = 1-278 will have the same Mach number distribution as a flat 
plate in a sonic stream; namely, M = 1. 

Application to rear surface of diamond-shaped airfoil.- For all 
Mach numbers below shock attachment, the local Mach number remains 1.0 
just ahead of the corner, and therefore the Prandtl-Meyer expansion at 
the corner remains constant. The Mach number distribution on the rear 
is considered to result from a Prandtl-Meyer expansion and the reflected 
compression waves from the sonic line. A sketch illustrating this 
influence on the rear surface is given as figure 9«  The subsonic 
influence (due to reflected compression waves from the sonic line) must 
decrease to zero when the local Mach number on the front becomee sonic. 
The subsonic influence on the rear is assumed to vary with stream Mach 
number in the same manner as the subsonic flow over the front and C(x) 
for the rear is proportional to 

(M2 - l)pM . (M2 - i)„ =1 PM ~   ^    ~  ";MC_ 

where (M^ - l)pM corresponds to the Mach number obtained by a Prandtl- 

Meyer expansion through an angle 25.  In other words, the subsonic 
influence on the rear for M^ = 1 given in reference 1 is multiplied 

fb  - 5^2/3 by the factor ( J    to obtain the subsonic influence at other 

Mach numbers.  The corresponding M^ - 1 and M distributions are 
shown in figures 6 and 7> respectively. 

Figure 10 gives the pressure distributions, based upon the exact 
formula for the pressure coefficient, corresponding to the Mach number 
distributions (0.8< Mro <: 1.3) of figure 7. Note that the pressure- 
distribution curves form a confused pattern, whereas the Mach number 
distribution curves are more uniform.  This behavior indicates that 
studies of transonic flow phenomena should be interpreted in terms- of 
Mach number rather than pressure coefficient. 

Figure 11 presents a comparison of the Mach number distributions 
calculated by the present method with those calculated in reference 2 for 
a 10-percent-thick diamond-shaped airfoil. The Mach number distributions 
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obtained in reference 2 are presented as two curves.  This choice arose 
in reference 2 because there was some question whether M^ - 1 should 
be replaced by 2(M - 1).  For the 10-percent-thick diamond-shaped, 
airfoil, the Mach number is known to be exactly 1.0 just ahead of the 
corner and 1.485 just after the Prandtl-Meyer expansion at the corner 
for inviscid flow. 

Drag coefficient.- Figure 12 shows the variation of drag coefficient 

with stream Mach number for the 10-percent-thick diamond-shaped airfoil. 
Separate curves are presented for the front and rear surfaces in order 
to emphasize the change in relative importance of the drag contributed 
by the two parts as the Mach number varies. An attempt has been made to 
reproduce faithfully the peculiarities and breaks in the curve, especially 
as the local Mach number on the front surface becomes sonic. The 
present results fair smoothly into the exact supersonic results; in 
fact, the supersonic results can be obtained to a high degree of accuracy 
by the present method. 

Figure 13 presents a comparison of the drag curve given by the 
proposed method with the "possible interpolated curve" of reference 2 
for a 7-87-percent-thick diamond-shaped airfoil.. The "boxes" shown 
in figure 13 represent the choice of drag coefficients which are due to 
the choice of pressure coefficients and stream Mach numbers presented 
in reference 2.  The two curves are very similar except near attachment 
Mach number.  Reference 2 shows a fairly small slope for the drag curve 
in this region, whereas shock-expansion theory and the present method 
indicate that this slope becomes extremely large. 

By use of the present concepts an explicit expression may be derived 
for the drag coefficient of a diamond-shaped airfoil for M^ > 1.  The 
drag coefficient may be expressed in terms of the airfoil thickness 
ratio 5 and average pressure coefficient P as follows: 

cd = 6(Pfront - ^rear, 

Except in the equations to follow, the exact pressure relations have 
been used throughout this paper.  If the exact expression for the pressure 
coefficient were used in the analysis to follow, the formula obtained 
for the drag coefficient would yield the drag curve shown in figure 12. 
However, for the sake of simplicity, the following approximate relation 
obtained from Bernoulli's equation and limited to Mach numbers in the 
neighborhood of unity is used: 

7 + 1 

"1 

(M2 - 1) - (M«2 - 1) 
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Then 

25 
7+1 (* 

2 - l)pM - C(x)R(5 - 5*)2/3 + C(x)F(5 - S*fn 2/3 

where C(x)F =  -,— for the front surface at M«, = 1 and 
52/3 

C(x)R = 
<* - ^PM - <* - ^ 

K2/3 
for the rear surface at M«, = 1. 

For Prandtl-Meyer flow, Mc 
1= 3 

7+1 2/3 
and replacing 

C(x)v    and C(x)n In terms of the drag coefficient for 
'R 

leads 

to the following approximate expression for the drag coefficient: 

CA   = 
26 5/3 

(7 + Dl/3 
i2/3 + 2& 

'do 
5/332/3 

(7 + 1)1/3 

2/3 

(9) 

where :<*o is the drag coefficient for X»-1' 

Equation (9) is not sufficiently accurate for general use because 
of the rather severe limitations of the approximate pressure formula 
but is useful for illustrating the variation of drag coefficient with 
stream Mach number. 

Equation (9) separates the drag coefficient for a diamond-shaped ^ 
airfoil into two terms:  (l) a supersonic term contributed by the Prandt'l- 
Meyer corner which remains constant and (2) a subsonic term which 
decreases to zero in the vicinity of shock-attachment Mach number. 

At stream Mach numbers less than 1.0, the drag contributed by the 
supersonic term is no longer constant but is decreased.because a shoak 
wave moves forward along the rear surface. This forward movement 
decreases the extent of the supersonic region which ;is' gradually replaced 
by the symmetrical subsonic pressure distribution. The existence of a 
shock wave on the rear surface at these speeds makes the calculation of 
the pressure distribution very difficult since the location of the shock 
wave is strongly affected by boundary-layer separation. For this reason, 
the total drag coefficients in the subsonic range are not presented. 
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CONCLUDING REMARKS 

A velocity-correction formula has been proposed for the purpose of 
calculating, from the known Mach number distribution for a diamond- 
shaped airfoil at a stream Mach number of 1.0, Mach number distributions 
on the same airfoil at speeds from a Mach number of about 0.8 to shock- 
attachment Mach number. The formula exhibits the following properties: 

(1) The formula contains the general transonic similarity rule as 
well as the special form for a sonic stream. 

(2) The local Mach number over the front surface of the airfoil 
is 1.0 at the correct stream Mach number. 

(3) The drag coefficient is that given by Guderley and Yoshihara 
when Mw = 1. 

(k)  The rate of change of drag coefficient with stream Mach number 
at Moo= 1 is the same as that given by Vincenti and Wagoner. 

(5) Calculated Mach number distributions are in agreement with 
calculations based on shock-expansion theory above shock-wave attachment 
Mach numbers. 

(6) The formula reduces to the proper form for Prandtl-Meyer flow. 

Pressure and Mach number distributions for a 10-percent-thick 
diamond-shaped airfoil are presented for the Mach number range 
°-° > Moo > 1-3. The variation of local Mach number distribution with 
stream Mach number is regular, whereas the pressure-distribution curves 
form a confused pattern. This behavior indicates that studies of 
transonic flow phenomena should be interpreted in terms of Mach number 
rather than pressure coefficient. 

By the use of the velocity-correction formula proposed in the present 
paper, an approximate expression is derived for the drag coefficient 
of a diamond-shaped airfoil as a function of stream Mach number and 
thickness ratio. The drag coefficient is separated into two terms:  (l) a 
supersonic term contributed by the Prandtl-Meyer corner and (2) a subsonic- 
term which decreases to zero in the vicinity of attachment Mach number. 

In its present form, the proposed velocity-correction formula 
appears to be applicable only to diamond-shaped airfoils at transonic 
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speeds and will probably require modification if it is to be applied 
to curved airfoils. Presumably, the present concepts may be used to 
obtain corresponding relations for a cone. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va., August 15, 1951 
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APPENDIX 

DERIVATION OF TRANSONIC SIMILARITY RULE FOR A SONIC STREAM 

The results presented in reference 3 have shown that, when a 
perturbation velocity potential 0 is defined by 

u = a* + 0X 
v = 0y 

(Al) 

where a* is the velocity of sound for M = 1, and x and y are 
Cartesian coordinates the transonic approximation to the differential 
equation for the flow of a compressible fluid may be written as 

"-^ 0x 0xx - 0yy = 0 <A2) 
a* 

In addition, when 2(M - l) is replaced by M2 - 1, 

7 + 1 A    _ M2 
a* 

0X = W- -  1 (A3) 

Also, from reference 3, the appropriate boundary conditions for 
equation (2) when the stream is sonic are 

h^2l . 5h|) (A*) 

and at infinity 

0X = 0y = 0 (A5) 

where 5 denotes the airfoil thickness ratio, c Is the chord, and h 
is a function describing the body shape. 

A solution 0i(x]_, yj)   of equations (A2), (AU), and (A5) is assumed 

to be known. Two flows are considered to be similar if a solution 
02(
x2> y2) satisfying equations similar to  (A2), (A4), and (A5) can be 

<> 
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related to 0,.  In particular, similarity will exist providing A, B, C 

can be so determined that 

-"N 

02 = A0! 

x2 = Bxj 

y2 = Cy-L 

if, in addition, 0X and 02 
both satisfy equation (A2), and 

(A6) 

J 

01yl(xi, 0) - &1h(^ 

02y2(x2, 0) = 62h||) 

> (A7) 

and at infinity 

0V - 01xi - 02y2 - 02X2 ' 0 

With full generality, C]_ may be taken equal to c2 since 

both bodies are in the flow field which extends infinitely far in every 
direction. If cj = c2, then B = 1. Flows involving different values 

of 7 need not be considered in this analysis, which is primarily 
concerned with the result for a particular gas - namely, air. 

If both 0-]_ and 02 are to satisfy equation (A2), it is easily 

found that 

AC2 = 1 (A8) 

From equations (A6) and (A7) 

01yi(x,O) = 8lh(|) - | 0%2(x,O) - I 62h(|) 

from which 

C 
A (A9) 
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From equations  (A8)  and (A9), 

C  . (-0 (AXO) 

From equation (A3) 

02x(*>°) = TTT (M22 - l) - A0lx(x,O) = A ^ (Ml
2 - l) (A12) 

and, from equations (All) and (A12), 

M 2  .   - 2/3 Ml2 - 1 
M2 - 1 = 82    -j— 

Inasmuch as 0-^ vas assumed to "be the known solution, the value 

M-,2 - 1 
of —*■—-— at the surface may be replaced by C(x), a known function, 

812/3 

and the transonic similarity rule for a sonic stream yields the result 
that, on the surface, 

M2 - 1 = Ö2/3 C(x) (A13) 
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Figure 3-- Prandtl-Meyer flow plotted to illustrate role of 5*. 

'M 2 - l\3/2 
M2 - 1 = C|S - 5*|2/3; 5* = (- 
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Increasing C(ac) 

*>-i 

Figure h.-  Illustration of proposed velocity-correction formula showing 

combination of concepts of C(x) and 5*. M2 - 1 = C(x)|S - S*j '3; 

5*. M^Y/2. 
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